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SYSTEM REQUIREMENTS ELICITATION AND
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ROBOT SUSPENSION SYSTEM



Robot Arms in Space for In-Orbit Manipulation

▪ Docking Maneuvers

▪ Life extension, inspections and surveillance 

▪ Change of orbit using add-on propulsion systems

▪ End-of-life removal from orbit
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Robotic Arms in Space Exploration 

▪ Some space robot non-gravity-bearing

▪ Suspension systems necessary

On-Ground Validation

Canadarm2 (NASA)



On-Ground Validation of Space Robot I

▪ Movements on thin layer of air

▪ Robot mounted on several platforms
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Air Bearings [5]

▪ Often used for astronaut training

▪ Underwater compensates for gravity

Neutral Buoyancy [4]

Air Bearing Test Setup at ESA ESTEC (ESA)

▪ Support solar arrays

▪ Large and high inertia

Helium Balloons [6]



On-Ground Validation of Space Robot II
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▪ Zero-gravity

▪ Short Timespan

Free-fall/Parabolic Flights [12]

▪ Gantry crane for horizontal positioning

▪ Vertical force applied passively or actively

Rail-based Suspension Systems [14]

Rail-based suspension system: The NASA Active Response Gravity 

Offload System (NASA)

▪ Cable-Driven positioning

▪ Lightweight design

Cable-Driven Parallel Suspension Systems



Core Requirements for Suspension Systems

Gravity Compensation
▪ Reducing Joint Torques

▪ Zero Gravity

▪ Adaptable Gravity Environment 
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Dynamics Analysis 

Capability
▪ High Vibration Bandwidth 

▪ Suspension Force Observation 

▪ Non-Invasive Testing

Usability
▪ Unlimited Experiment Duration 

▪ Compactness and Affordability 

▪ Low Experiment Effort 

Geometric Flexibility
▪ Extended Workspace 

▪ 6-DoF Work Envelope
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Core Requirements – Reducing Joint Torques

▪ Some space robots non-

gravity-bearing

▪ Designed for zero gravity, 

but tested at Earth
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Space Robot

▪ Should reduce the robot’s 

joint torques

Suspension System

Robot joint torques with (line) and without (dotted) suspension 

system (DLR)



Core Requirements – 6-DoF Work Envelope

▪ Grasping, vision-based 

latching, rapid retraction 

trajectories 

▪ 6-DoF motions necessary
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Space Robot

▪ Suspension system should 

allow 6-DoF motions

Suspension System

6-DoF motions necessary during latching trajectories (DLR)



COMPARATIVE ANALYSIS
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Discussion

▪ Neutral buoyancy and free-falling: 
most realistic zero-gravity 
environment 

▪ High effort for zero-gravity -> 
drawbacks in the development 
process

▪ Utility of true zero-gravity is limited 

▪ Focus less on realistic zero-gravity 
and more on other requirements

▪ Cable-driven suspension system is 
most promising for testing space 
robot

10

Concept of the Motion Suspension System (MSS) by the DLR



A Cable-Driven Suspension System –
Motion Suspension System (MSS)

▪ Four Dyneema cables

▪ Direct drive motors
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Cable-Based Mechanical Support

▪ No real zero-gravity

▪ Gravity compensation is MSS + 
additional robotic joint torques

Reducing Joint Torques

Space robot CAESAR by the German Aerospace Center operating with the Motion 

Suspension System (MSS)
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