SYSTEM REQUIREMENTS ELICITATION AND CONCEPTUALIZATION FOR A NOVEL SPACE ROBOT SUSPENSION SYSTEM

Ferdinand Elhardt^{1,2}, Roland Boumann², Marco De Stefano¹, Robin Heidel², Patrik Lemmen², Martin Heumos¹, Christoph Jeziorek², Máximo A. Roa¹, Manfred Schedl¹, and Tobias Bruckmann²

¹ Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Contact: ferdinand.elhardt@dlr.de)

² Chair of Mechatronics, University of Duisburg-Essen, Germany

Robot Arms in Space for In-Orbit Manipulation

Robotic Arms in Space Exploration

- Docking Maneuvers
- Life extension, inspections and surveillance
- Change of orbit using add-on propulsion systems
- End-of-life removal from orbit

On-Ground Validation

- Some space robot non-gravity-bearing
- Suspension systems necessary

Canadarm2 (NASA)

On-Ground Validation of Space Robot I

Air Bearings [5]

- Movements on thin layer of air
- Robot mounted on several platforms

Helium Balloons [6]

- Support solar arrays
- Large and high inertia

Neutral Buoyancy [4]

- Often used for astronaut training
- Underwater compensates for gravity

Air Bearing Test Setup at ESA ESTEC (ESA)

On-Ground Validation of Space Robot II

Free-fall/Parabolic Flights [12]

- Zero-gravity
- Short Timespan

Rail-based Suspension Systems [14]

- Gantry crane for horizontal positioning
- Vertical force applied passively or actively

Cable-Driven Parallel Suspension Systems

- Cable-Driven positioning
- Lightweight design

Rail-based suspension system: The NASA Active Response Gravity Offload System (NASA)

Core Requirements for Suspension Systems

Gravity Compensation

- Reducing Joint Torques
- Zero Gravity
- Adaptable Gravity Environment

Dynamics Analysis Capability

- High Vibration Bandwidth
- Suspension Force Observation
- Non-Invasive Testing

Geometric Flexibility

- Extended Workspace
- 6-DoF Work Envelope

Usability

- Unlimited Experiment Duration
- Compactness and Affordability
- Low Experiment Effort

Core Requirements for Suspension Systems

Gravity Compensation

- Reducing Joint Torques
- Zero Gravity
- Adaptable Gravity Environment

Dynamics Analysis Capability

- High Vibration Bandwidth
- Suspension Force Observation
- Non-Invasive Testing

Geometric Flexibility

- Extended Workspace
- 6-DoF Work Envelope

Usability

- Unlimited Experiment Duration
- Compactness and Affordability
- Low Experiment Effort

Core Requirements – Reducing Joint Torques

Space Robot

- Some space robots nongravity-bearing
- Designed for zero gravity, but tested at Earth

Suspension System

 Should reduce the robot's joint torques

Space robot's joint torques

Robot joint torques with (line) and without (dotted) suspension system (DLR)

Core Requirements – 6-DoF Work Envelope

Space Robot

- Grasping, vision-based latching, rapid retraction trajectories
- 6-DoF motions necessary

Suspension System

 Suspension system should allow 6-DoF motions

6-DoF motions necessary during latching trajectories (DLR)

COMPARATIVE ANALYSIS

Suspension Concept Requirement	Air Bearing	Helium Balloons	Neutral Buoyancy	Free- falling	Rail- based	Cable- driven
Gravity Compensation						
Reducing Joint Torques	++	++	++	++	++	++
Zero Gravity	+	0	+	+	+	+
Adaptable Gravity Environment		0	0		++	++
Geometric Flexibility		\frown				
Extended Workspace	+	++	++		+	+
6-DoF Work Envelope		++	++	++	++	++
Dynamics Analysis Capability						
High Vibration Bandwidth	-			++ ³	-	++
Observation Capability	++	++		++ ³	++	++
Non-Invasive Testing	+	+		++	+	+
Usability						
Unlimited Experiment Duration	0	++	+		++	++
Compactness and Affordability	0	++	()		0	+
Low Experiment Effort	+	+	<u> </u>		+	+

³fulfilled because of zero-gravity

Discussion

- Neutral buoyancy and free-falling: most realistic zero-gravity environment
- High effort for zero-gravity -> drawbacks in the development process
- Utility of true zero-gravity is limited
- Focus less on realistic zero-gravity and more on other requirements
- Cable-driven suspension system is most promising for testing space robot

Concept of the Motion Suspension System (MSS) by the DLR

A Cable-Driven Suspension System – Motion Suspension System (MSS)

Cable-Based Mechanical Support

- Four Dyneema cables
- Direct drive motors

Reducing Joint Torques

- No real zero-gravity
- Gravity compensation is MSS + additional robotic joint torques

Space robot CAESAR by the German Aerospace Center operating with the Motion Suspension System (MSS)

Imprint/Sources

Date:Oct. 2023Author:Ferdinand ElhardtInstitute:German Research Center DLR, Oberpfaffenhofen, RM-MSYCredits:DLR

[4] A. Flores-Abad, O. Ma, K. Pham, and S.Ulrich, "A review of space robotics technologies for on-orbit servicing," Progressing Aerospace Sciences, 2014. DOI: 10.1016/j.paerosci.2014.03.002.

[5] J. L. Schwartz, M. A. Peck, and C. D.Hall, "Historical Review of Air-Bearing Spacecraft Simulators," Journal of Guidance, Control, and Dynamics, 2003. DOI:10.2514/2.5085.

[6] M. Leipold, M. Eiden, C. Garner, L. Herbeck, D. Kassing, T. Niederstadt, T. Krüger, G. Pagel, M. Rezazad, H. Rozemeijer, W. Seboldt, C. Schöppinger, C. Sickinger, and W. Unckenbold, "Solar sail technology development and demonstration," Acta Astronautica, vol. 52, no. 2-6, pp. 317–326, 2003. DOI: 10.1016 / S0094 - 5765(02) 00171-6.

[12] C. Lotz, Y. Wessarges, J. Hermsdorf, W. Ertmer, and L. Overmeyer, "Novel active driven drop tower facility for micrograv- ity experiments investigating production technologies on the example of substratefree additive manufacturing," Advances in Space Research, vol. 61, no. 8, pp. 1967–1974, 2018. DOI: 10.1016/j.asr.2018.01.010.

[14] M. Deremetz, M. Debroise, S. Govindaraj, A. But, I. Nieto, M. De Stefano, H. Mishra, B. Brunner, G. Grunwald, M. A. Roa, M. Reiner, M. Závodník, M. Komarek, J. D'Amico, F. Cavenago, J. Gancet, P. Letier, M. Ilzkovitz, L. Gerdes, and M. Zwick, "Demonstrator Design of a modular Multi Arm Robot for onorbit large Telescope Assembly," in Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, Netherlands, 2022.